Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 18(7): 1486-1502, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34740308

RESUMO

The ubiquitin-proteasome system (UPS) and macroautophagy/autophagy are the main proteolytic systems in eukaryotic cells for preserving protein homeostasis, i.e., proteostasis. By facilitating the timely destruction of aberrant proteins, these complementary pathways keep the intracellular environment free of inherently toxic protein aggregates. Chemical interference with the UPS or autophagy has emerged as a viable strategy for therapeutically targeting malignant cells which, owing to their hyperactive state, heavily rely on the sanitizing activity of these proteolytic systems. Here, we report on the discovery of CBK79, a novel compound that impairs both protein degradation by the UPS and autophagy. While CBK79 was identified in a high-content screen for drug-like molecules that inhibit the UPS, subsequent analysis revealed that this compound also compromises autophagic degradation of long-lived proteins. We show that CBK79 induces non-canonical lipidation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) that requires ATG16L1 but is independent of the ULK1 (unc-51 like autophagy activating kinase 1) and class III phosphatidylinositol 3-kinase (PtdIns3K) complexes. Thermal preconditioning of cells prevented CBK79-induced UPS impairment but failed to restore autophagy, indicating that activation of stress responses does not allow cells to bypass the inhibitory effect of CBK79 on autophagy. The identification of a small molecule that simultaneously impairs the two main proteolytic systems for protein quality control provides a starting point for the development of a novel class of proteostasis-targeting drugs.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Autofagia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo
2.
Cell Death Dis ; 12(10): 914, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615851

RESUMO

Malignant cells display an increased sensitivity towards drugs that reduce the function of the ubiquitin-proteasome system (UPS), which is the primary proteolytic system for destruction of aberrant proteins. Here, we report on the discovery of the bioactivatable compound CBK77, which causes an irreversible collapse of the UPS, accompanied by a general accumulation of ubiquitylated proteins and caspase-dependent cell death. CBK77 caused accumulation of ubiquitin-dependent, but not ubiquitin-independent, reporter substrates of the UPS, suggesting a selective effect on ubiquitin-dependent proteolysis. In a genome-wide CRISPR interference screen, we identified the redox enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) as a critical mediator of CBK77 activity, and further demonstrated its role as the compound bioactivator. Through affinity-based proteomics, we found that CBK77 covalently interacts with ubiquitin. In vitro experiments showed that CBK77-treated ubiquitin conjugates were less susceptible to disassembly by deubiquitylating enzymes. In vivo efficacy of CBK77 was validated by reduced growth of NQO1-proficient human adenocarcinoma cells in nude mice treated with CBK77. This first-in-class NQO1-activatable UPS inhibitor suggests that it may be possible to exploit the intracellular environment in malignant cells for leveraging the impact of compounds that impair the UPS.


Assuntos
NAD(P)H Desidrogenase (Quinona)/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/antagonistas & inibidores , Animais , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/metabolismo , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Camundongos Nus , Fenótipo , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Front Chem ; 8: 64, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117887

RESUMO

Instant and adequate handling of misfolded or otherwise aberrant proteins is of paramount importance for maintaining protein homeostasis in cells. The ubiquitin/proteasome system (UPS) is a central player in protein quality control as it operates in a seek-and-destroy mode, thereby facilitating elimination of faulty proteins. While proteasome inhibition is in clinical use for the treatment of hematopoietic malignancies, stimulation of the UPS has been proposed as a potential therapeutic strategy for various neurodegenerative disorders. High-throughput screens using genetic approaches or compound libraries are powerful tools to identify therapeutic intervention points and novel drugs. Unlike assays that measure specific activities of components of the UPS, reporter substrates provide us with a more holistic view of the general functional status of the UPS in cells. As such, reporter substrates can reveal new ways to obstruct or stimulate this critical proteolytic pathway. Here, we discuss various reporter substrates for the UPS and their application in the identification of key players and the pursuit for novel therapeutics.

4.
J Cell Sci ; 130(19): 3336-3346, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28966167

RESUMO

The consecutive actions of the ubiquitin-selective segregase Cdc48 and the ubiquitin shuttle factor Rad23 result in the delivery of ubiquitylated proteins at the proteasome. Here, we show that the deubiquitylating enzyme Ubp12 interacts with Cdc48 and regulates proteasomal degradation of Rad23-dependent substrates in Saccharomyces cerevisiae. Overexpression of Ubp12 results in stabilization of Rad23-dependent substrates. We show that Ubp12 removes short ubiquitin chains from the N-terminal ubiquitin-like domain (UbL) of Rad23. Preventing ubiquitylation of Rad23 by mutation of lysine residues within the UbL domain, Rad23UbLK0, does not affect the non-proteolytic role of Rad23 in DNA repair but causes an increase in ubiquitylated cargo bound to the UBA2 domain of Rad23, recapitulating the stabilization of Rad23-dependent substrates observed upon overexpression of Ubp12. Expression of Rad23UbLK0 or overexpression of Ubp12 impairs the ability of yeast to cope with proteotoxic stress, consistent with inefficient clearance of misfolded proteins by the ubiquitin-proteasome system. Our data suggest that ubiquitylation of Rad23 plays a stimulatory role in the degradation of ubiquitylated substrates by the proteasome.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endopeptidases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinação , Proteínas de Ligação a DNA/genética , Endopeptidases/genética , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...